

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

firs 4 Examinations, April 2022

Total points: 100
Duration: 3 Hours
Class: M.TECH(CM).
Name of the Course:
MTCM-102
Instructions:

1. Q1 and Q2 are compulsory
2. Draw neat diagrams
3. Assume suitable data if necessary and state the clearly.

Table 1: Area Under Normal Curve

An entry in the table is the proportion under the entire curne which is hetween $=0$ and a positive value of : Arais for negative values for : are obtained by symmery.

Areas of a standard normal distritution

z	. 0	0.01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
. 0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	. 0239	. 0279	. 0319	. 0359
. 1	. 0398	. 0438	. 0478	. 0517	. 0557	. 0596	. 0636	. 0675	. 0714	. 0753
2	. 0793	. 0832	. 0871	. 0910	. 0948	. 0987	. 1026	. 1064	. 1103	. 1141
3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. $1+43$. 1480	. 1517
. 4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	.184	. 1879
5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	2190	. 2224
. 6	. 2757	. 2291	.2324	. 2357	. 2389	. 2422	. 2454	. 2486	. 2517	. 2549
. 7	. 2580	. 2611	. 2642	. 2673	. 2903	. 2734	. 2764	.2794	. 2823	. 2852
. 8	. 2881	.2910	. 2939	. 2967	. 2995	. 3023	. 3051	. 3078	. 3106	. 3133
9	3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389
1.0	. $3+13$. 3438	. $3+61$. 3485	. 3508	. 3531	. 3554	. 3577	. 3599	. 3621
1.1	$36+3$. 3665	. 3686	. 3708	. 3729	. 3749	. 3770	. 3790	. 3810	. 3830
12	. 3849	. 3869	. 3888	. 3907	. 3925	. 3944	. 3962	. 3980	. 3997	. 4015
1.3	. 4032	. 4079	. 4066	. 4082	. 4099	. 4115	4131	. 4147	4162	. 4177
1.4	. 4192	. 4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	. 4306	. 4319
15	. 4332	. 4345	. 4357	. 4370	. 4382	. 4394	. 406	. 4418	429	. 441
1.6	. 4452	. 4463	. 4474	. 4484	. 4495	. 4505	.4515	. 4525	. 4535	. 4545
1.7	. 4554	. 4564	. 4573	. 4582	. 4591	. 4599	. 4608	. 4616	.4535 .4625	. 46453
1.8	. 4641	. 4649	. 4656	. 4664	. 4671	. 4678	. 4686	. 4693	. 4699	. 4706
19	. 4713	. 4719	. 4726	. 4732	. 4738	. $47+4$.4686 .450	. 4756	. 4761	. 4767
20	. 4772	. 4778	. 4783	. 4788	. 4793	. 4798	. 4803	. 4808	. 4812	. 4817
2.1	. 4821	. 4826	. 4830	. 4834	. 4838	. 4842	. 4846	4850	. 4854	. 4857
22	. 4861	. 4864	. 4868	. 4871	. 4875	. 4878	. 4881	. 488.	. 4887	. 4890
23	. 4893	. 4896	. 4898	. 4901	. 4904	. 4906	.4881 .4909	. 48811	. 4887	
2.4	. 4918	. 4920	. 4922	. 4925	. 4927	.4929	.4991 .4931	. 4911	.4913 .4934	. 4936
25	. 4938	. 4940	4941	. 4943	. 4945	. 4946	. 4948	. 4949	. 4951	. 4952
26	. 4953	. 4955	. 4956	. 4957	. 4959	. 4960				
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	.4960 .4970	.4961 .4971	. 4962	. 4963	. 4964
28	. 4974	. 4975	. 4976	. 4977	. 4977	. 4970	.4971 4979	. 4972	. 4973	. 4974
29	. 4981	. 4982	. 4982	. 4983	. 4984	. 4978	. 4979	. 4979	. 4980	. 4981
3.0	. 4987	. 4987	.. 4987	. 4988	. 4988	. 4989	.4985 .4989	.4985 .4989	. 4986	. 4986

Table 2: Critical Values of Student's t-Distribution

d.f.	Level of significance for two-tailed test					d.f.
	0.20	0.10	0.05	0.02	0.01	
	Level of significance for one-tailed test					
	0.10	0.05	0.025	0.01	0.005	
1	3.078	6.314	12.706	31.821	63.657	1
2	1.886	2.920	4.303	6.965	9.925	2
3	1.638	2.353	3.182	4.541	5.841	3
4	1.533	2.132	2.776	3.747	4.604	4
5	1.476	2.015	2.571	3.365	4.032	5
6	1.440	1.943	2.447	3.143	3.707	6
7	1.415	1.895	2.365	2.998	3.499	7
8	1.397	1.860	2.306	2.896	3.355	8
9	1.383	1.833	2.262	2.821	3.250	9
10	1.372	1.812	2.228	2.764	3.169	10
11	1.363	1.796	2.201	2.718	3.106	11
12	1.356	1.782	2.179	2.681	3.055	12
13	1.350	1.771	2.160	2.650	3.012	13
14	1.345	1.761	2.145	2.624	2.977	14
15	1.341	1.753	2.731	2.602	2.947	15
16	1.337	1.746	2.120	2.583	2.921	16
17	1.333	1.740	2.110	2.567	2.898	17
18	1.330	1.734	2.101	2.552	2.878	18
19	1.328	1.729	2.093	2.539	2.861	19
20	1.325	1.725	2.086	2.528	2.845	20
21	1.323	1.721	2.080	2.518	2.831	21
22	1.321	1.717	2.074	2.508	2.819	22
23	1.319	1.714	2.069	2.500	2.807	23
24	1.318	1.711	2.064	2.492	2.797	24
25	1.316	1.708	2.060	2.485	2.787	25
	1.315	1.706	2.056	2.479	2.779	26
26	1.314	1.703	2.052	2.473	2.771	27
28	1.313	1.701	2.048	2.467	2.763	28
28	1.311	1.699	2.045	2.462	2.756	29
Infinity	1.282	1.645	1.960	2.326	2.576	Infinity

Table 3: Critical Values of χ

$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedom } \end{aligned}$	Probability under H_{0} that of $\chi^{2}>$ Chi square						
	99	. 95	50	. 10	. 05	. 02	. 01
1	. 000157	. 00393	. 455	2.706	3.841	5.412	6.635
2	. 0201	. 103	1.386	4.605	5.991	7.824	9.210
3	. 115	. 352	2.366	6.251	7.815	9.837	11.341
4	. 297	. 711	3.357	7.779	9.488	11.668	13.277
5	. 554	. 1145	4.351	9.236	11.070	13.388	15.086
6	. 872	1.635	5.348	10.645	12.592	15.033	16.812
7	1.239	2.167	6.346	12.017	14.067	16.622	18.475
8	1.646	2.733	7.344	13.362	15.507	18.168	20.090
9	2.088	3.325	8.343	14.684	16.919	19.679	21.666
10	2.558	3.940	9.342	15.987	18.307	21.161	23.209
11	3.053	4.575	10.341	17.275	19.675	22.618	24.725
12	3.571	5.226	11.340	18.549	21.026	24.054	26.217
13	4.107	5.892	12.340	19.812	22.362	25.472	72.688
14	4.660	6.571	13.339	21.064	23.685	26.873	29.141
15	4.229	7.261	14.339	22.307	24.996	28.259	30.578
16	5.812	7.962	15.338	23.542	26.296	29.633	32.000
17	6.408	8.672	16.338	24.769	27.587	30.995	33.409
18	7.015	9.390	17.338	25.989	28.869	32.346	34.805
19	7.633	10.117	18.338	27.204	30.144	33.687	36.191
20	8.260	10.851	19.337	28.412	31.410	35.020	37.566
21	8.897	11.591	20.337	29.615	32.671	36.343	38.932
22	9.542	12.338	21.337	30.813	33.924	37.659	40.289
23	10.196	13.091	22.337	32.007	35.172	38.968	41.638
24	10.856	13.848	23.337	32.196	36.415	40.270	42.980
25	11.524	14.611	24.337	34.382	37.652	+1.566	4.314
26	12.198	15.379	25.336	35.363			
27	12.879	16.151	26.336	36.741	40.113	4.856 +4.140	46.963
28	13.565	16.928	27.336	37.916	41.337	45.419	48.278
29 30	14.256	17.708	28.336	39.087	42.557	46.693	49.588
30	14.953	18.493	29.336	40.256	43.773	47.962	50.892

Note: For degrees of freedom greater hanan 30 , the quantity $2 \chi^{2}-\sqrt{2 \text { d.f. }-1}$ may be used as a normal variate with uiti variance i.e., $z_{\alpha}=\sqrt{2 \chi^{2}}-\sqrt{2 \text { d.f. }-1}$.

Table $4(\mathbf{a})$: Critical Values of F-Distribution (at 5 per cent)

[^0]

1	1	2	3	4	5	6	8	12	24	∞
1	4052	4999.5	5403	5625	5764	5859	5982	6106	6235	6366
2	98.50	99.00)	99.17	99.25	99.30	99.33	99.37	99.42	99.46	99.50
3	34.12	30.82	29.46	28.71	28.24	27.91	27.49	27.05	26.60	26.13
4	21.20	18.00	16.69	15.98	15.52	15.21	14.80	14.37	13.93	13.45
5	16.26	13.27	12.06	11.39	10.97	10.67	10.29	9.89	9.47	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.10	7.72	7.31	6.88
7	1225	9.55	8.45	7.85	7.46	7.19	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.06	4.71	4.33	3.91
11	9.65	7.21	6.22	5.87	5.32	5.07	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.30	3.96	3.59	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.14	3.80	3.43	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.79	3.46	3.08	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.71	3.37	3.00	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.63	3.30	3.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.56	3.23	2.86	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.51	3.17	2.80	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.20	2.96	2.58	2.10
27	7.68	5.49	4.60	4.11	3.78	3.56	3.26	2.93	2.45	2.13
28	7.64	5.45	4.57	4.07	3.75	3.53	3.23	2.90	2.52	2.06
29	7.60	5.42	4.54	4.04	3.73	3.50	3.20	2.87	2.44	2.03
30	7.56	5.39	4.51	4.02	3.70	3.47	3.17	2.84	2.47	2.01
40 60	7.31 7.08	5.18	4.31	3.83	3.51	3.29	2.99	2.66	2.29	1.80
60 120	7.08 6.85	4.98	4.13	3.65	3.34	3.12	2.82	2.50	2.12	1.60
120	6.85 6.64	4.79 4.60	3.95	3.48	3.17	2.96	2.66	2.34	1.95	1.38
∞	6.64	4.60	3.78	3.32	3.02	2.80	2.51	2.18	1.79	1.00

$v_{1}=$ Degrees of freedom for greater variance.
$v_{i}=$ Degrees of freedom for smaller variance.

Table 5: Vatues ior Spearman's Rank Correlation (r) for Combined Areas in Both Tats

n	. 20	. 10	. 05	. 02	. 01	.002
4	.8000	. 8000	-	-	-	-
5	. 7000	. 8000	. 9000	. 9000	-	-
6	. 6000	. 7714	. 8236	. 8857	. 9429	-
7	. 5357	. 6786	. 7450	. 8571	. 8929	. 9643
8	. 5000	. 6190	. 7143	8095	. 8571	. 9286
9	. 4667	. 58.33	. 6833	7667	. 8167	. 9000
10	. 4424	. 5515	. 6364	. 7333	. 7818	. 8667
11	. 4182	. 5273	. 6091	. 7000	. 7455	. 8364
12	. 3986	. 4965	. 5804	. 6713	. 7273	. 8182
13	. 3791	. 4780	. 5549	. 6429	. 6978	. 7912
14	. 3626	.4593	. 5341	. 6220	. 6747	. 7670
15	. 3500	. 4429	. 5179	. 6000	. 6536	. 7464
16	. 3382	. 4265	. 5000	. 5824	. 6324	. 7265
17	. 3260	. 4118	. 4853	. 5637	. 6152	. 7083
18	. 3148	. 3994	. 4716	. 5480	. 5975	. 6904
19	. 3070	. 3895	. 4579	. 5333	. 5825	. 6737
20	. 2977	. 3789	. 4451	. 5203	. 5684	. 6586
21	. 2909	. 3688	. 4351	. 5078	. 5545	. 6455
22	. 2829	. 3597	. 4241	. 4963	. 5426	. 6318
23	. 2767	. 3518	. 4150	. 4852	. 5306	. 6186
24	. 2704	. 3435	. 4061	. 4748	. 5200	. 6070
25	. 2646	. 3362	. 3977	. 4654	. 5100	5962
26	. 2588	. 3299	. 3894	. 4564	. 5002	. 5856
27	. 2540	. 3236	. 3822	. 4481	. 4915	. 5757
28	. 2480	. 3175	. 3749	. 4401	. 4828	. 5660
24	. 2443	. 3113	. 3685	. 4320	. 4744	. 5567
30	.2400	. 3059	. 3620	. 4251	. 4665	. 5479

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

> ReExaminations, July 2022) Sem I An (Gontiong

Total points: 100
Duration: Total Time allotted will be 3 Hr .
Class: M.TECH(CM).
Semester:
Program: Civil
Name of the Course: Applied Statistics and Quantitative Techniques Course Code : PC-MTCM-

102

Instructions:

1. All Questions are compulsory
2. Draw neat diagrams
3. Assume suitable data if necessary and state the clearly.

	If spare is needed and not available, the total cost of idle time and replacement cost will be Rs. 15000 . Unused spares no salvage value. Determine the optimal number of spares to be ordered.																		
Q4(a)	Weekly demand of a product is assumed to be normally distributed. Use goodness of fit and following data to test this assumption. Use alpha $=0.10$, sample mean $=24.5$ sample std dev=3															10	1,2	2	1.3.2
Q4(b)	Watching television also reduces the amount of physical exercise, causing weight gain. A sample of 1510 yr old children was taken. The number of pounds each child was overweight was recorded (-ve sign shows child is underweight) the no. of hours of TV viewing per week also recorded. Fit the regression line.															10	1,2	4	2.3.2
Q5(a)	Explain Assignment Model? Explain central limit theorem															10	3,2	2	1.3.2
Q5(b)	short note on Hypergeometric and Exponential distribution. what are sampling and non-sampling errors?															10	3,2	2	1.3.2
Q6	Jobs		Sources													20	1,2	3 	2.3.2
			3		4		6		8			9		20					
			2		10		1		5			8		30					
			7		11		20			0		3		15					
			2		1		9			4		16		3					
	Use following methods to find optimal transportation cost and Check optimality of solution. 1.N-W corner method 2. Least cost Method 3.VAM																		
Q7(a)	7.1An automobile company manufactures around 150 scooters. The daily production varies from 146 to 154 depending upon availability of raw material and other working conditions.															10	2	4	2.3.2
	Production per day						Probability												
	146						0.04												
	147						0.09												
	148						0.12												
	149						0.14												
	150						0.11												
	151						0.10												
	152						0.20												

Tahle 1: Area Under Normal Curve

An entry in the table is the proportion under the emire curve which is between $=0$ and a positive value of 2 Aneas for negative values for $:$ are obtained by symmetry.

Areas of a standard normal distribution

$=$. 0	0.01	. 02	. 03	. 04	. 05	()6	. 07	. 08	(1)
0	.0000	. 01040	. 0080	. 0120	. 0160	. 0199	.0239	. 0279	. 0319	.0359
. 1	.0398	. 0438	. 0478	. 0517	. 0557	. 0596	. 0636	. 0675	. 0714	. 0753
. 2	. 0793	.0832	. 0871	. 0910	. 0948	. 0987	. 1026	. 1064	1103	.11+1
. 3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. 1443	. 1480	. 1517
4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	.184	. 1879
. 5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	. 2190	.2224
. 6	. 2357	. 2291	. 2324	. 2357	. 2389	. 2422	. 2454	. 2486	. 2517	$25+9$
. 7	. 2580	. 2611	. 2642	. 2673	. 2903	. 2734	. 2764	.2794	. 2823	. 2852
. S	. 2881	. 2910	. 2939	. 2967	. 2995	. 3023	. 3051	. 3078	. 3106	. 3133
. 9	. 3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389
1.0	. $3+13$. 3438	. 3461	. 3485	. 3508	. 3531	. 3554	. 3577	. 3599	.3621
1.1	. $36+3$. 3665	. 3686	. 3708	. 3729	. 3749	. 3770	. 3790	. 3810	. 3830
1.2	. 3849	. 3869	. 3888	. 3907	. 3925	. 394	. 3962	. 3980	. 3997	. 4015
1.3	. 4032	. 4049	. 4066	. 4082	. 4099	. 4115	. 4131	. 4147	4162	. +177
1.4	. 4192	. 4207	. 4222	. 4236	+ 4251	. 4265	. 4279	. 4292	. 4306	. 4319
1.5	. 4332	. 4345	. 4357	. 4370	. 4382	. 4394	. 406	4418	. 429	+ +1
1.6	. 452	. 463	. 4474	. 4884	. 4495	. 4505	. 4515	. 4525	. 4535	. 4545
1.7	. 4554	. 4564	. 4573	. 4582	. 4591	. 4599	. 4608	. 4616	. 4625	. 4633
1.8	. 4641	. $46+9$. 4656	. 4664	. 4671	. 4678	. 4686	. 4693	. 4699	. 4706
1.9	. 4713	. 4719	. 4726	. 4732	. 4738	. $47+4$. 4750	. 4756	. 4761	. 4767
20	. 4772	4778	. 4783	. 4788	. 4793	. 4798	. 4803	. 4808	. 4812	. 4817
2.1	4821	. 4826	. 4830	. 4834	. 4838	. 4842	. 4846	. 4850	. 4854	4857
2.2	4861	. 4864	. 4868	. 4871	. 4875	. 4878	. 4881	. 4888	. 4887	. 4890
2.3	. 4893	. 4896	. 4898	. 4901	. 4904	. 4906	. 4909	. 4911	. 4913	. 4916
2.4	. 4918	.4920)	. 4922	. 4925	. 4927	. 4929	. 4931	. 4932	.4913 .4934	. 4936
25	4938	. $49+70$. 4941	. 4943	4945	. $49+6$. 4948	. 4949	. 4951	. 4952
2.6	. 4953	. 4955	. 4956	. 4957	. 4959	. 4960				
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	. 4970				
2.8	. 4974	. 4975	. 4976	. 4977	. 4977	. 4978	9	.4972 4979	4973	. 4974
2.9	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	.4979 4985	4980 .4986	. 4981
3.0	. 4987	. 4987	.. 4987	. 4988	. 4988	. 4989	4989	. 4989	.4986 .4990	4986

Table 2: Critical Values of Student's t-Distribution

d.f.	Level of significance for two-tailed test					d.f.
	0.20	0.10	0.05	0.02	0.01	
	Level of significance for one-tailed test					
	0.10	0.05	0.025	0.01	0.005	
1	3.078	6.314	12.706	31.821	63.657	1
2	1.886	2.920	4.303	6.965	9.925	2
3	1.638	2.353	3.182	4.541	5.841	3
4	1.533	2.132	2.776	3.747	4.604	4
5	1.476	2.015	2.571	3.365	4.032	5
6	1.440	1.943	2.447	3.143	3.707	6
7	1.415	1.895	2.365	2.998	3.499	7
8	1.397	1.860	2.306	2.896	3.355	8
9	1.383	1.833	2.262	2.821	3.250	9
10	1.372	1.812	2.228	2.764	3.169	10
11	1.363	1.796	2.201	2.718	3.106	11
12	1.356	1.782	2.179	2.681	3.055	12
13	1.350	1.771	2.160	2.650	3.012	13
14	1.345	1.761	2.145	2.624	2.977	14
15	1.341	1.753	2.731	2.602	2.947	15
16	1.337	1.746	2.120	2.583	2.921	16
17	1.333	1.740	2.110	2.567	2.898	17
18	1.330	1.734	2.101	2.552	2.878	18
19	1.328	1.729	2.093	2.539	2.861	19
20	1.325	1.725	2.086	2.528	2.845	20
21	1.323	1.721	2.080	2.518	2.831	21
22	1.321	1.717	2.074	2.508	2.819	22
23	1.319	1.714	2.069	2.500	2.807	23
24	1.318	1.711	2.064	2.492	2.797	24
25	1.316	1.708	2.100	2.485	2.787	25
	1.315	1.706	2.056	2.479	2.779	26
$\begin{aligned} & 20 \\ & 27 \end{aligned}$	1.314	1.703	2.052	2.473	2.771	27
28	1.313	1.701	2.048	2.467 2.462	2.763	28
29	1.311	1.699	2.045 1.960	2.462	2.756	29
Infinity	1.282	1.645	1.961	2.326	2.576	Infinity

Table 3: Critical Values of χ

$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedom } \end{aligned}$	Probability under H_{0} that of $\chi^{2}>$ Chi square						
	. 99	. 95	. 50	. 10	. 05	02	. 01
	. 000157	. 00393	. 455	2.706	3.841	5.412	6.635
2	. 0201	. 103	1.386	4.605	5.991	7.824	9.210
3	. 115	. 352	2.366	6.251	7.815	9.837	11.341
4	. 297	. 711	3.357	7.779	9.488	11.668	13.277
5	. 554	. 1145	4.351	9.236	11.070	13.388	15.086
6	. 872	1.635	5.348	10.645	12.592	15.033	16.812
7	1.239	2.167	6.346	12.017	14.067	16.622	18.475
8	1.646	2.733	7.344	13.362	15.507	18.168	20.090
9	2.088	3.325	8.343	14.684	16.919	19.679	21.666
10	2.558	3.940	9.342	15.987	18.307	21.161	23.209
11	3.053	4.575	10.341	17.275	19.675	22.618	24.725
12	3.571	5.226	11.340	18.549	21.026	24.054	26.217
13	4.107	5.892	12.340	19.812	22.362	25.472	72.688
14	4.660	6.571	13.339	21.064	23.685	26.873	29.141
15	4.229	7.261	14.339	22.307	24.996	28.259	30.578
16	5.812	7.962	15.338	23.542	26.296	29.633	32.000
17	6.408	8.672	16.338	24.769	27.587	30.995	33.409
18	7.015	9.390	17.338	25.989	28.869	32.346	34.805
19	7.633	10.117	18.338	27.204	30.144	33.687	36.191
20	8.260	10.851	19.337	28.412	31.410	35.020	37.566
21	8.897	11.591	20.337	29.615	32.671	36.343	38.932
22	9.542	12.338	21.337	30.813	33.924	37.659	40.889
23 24	10.196 10856	13.091	22.337	32.007	35.172	37.659 38.968	41.28 +1.638
24 25	10.856	13.848	23.337	32.196	36.415	40.270	42.980
25	11.524	14.611	24.337	$3+.382$	37.652	+1.566	+4.314
26	12.198	15.379	25.336	35.363	38.885		45.642
27	12.879 13565	16.151	26.336	36.741	38.885 40.113	41.856 +4.140	+5.6世2 46.963
28 29	13.565 14.256	16.928 17.708	27.336	37.916	41.337	45.419	48.278
30	14.256 14.95	17.708 18.493	28.336	39.087	42.557	46.693	49.588
			29.336	40.256	43.773	47.962	50.892

Note: For degrees of freedom greater than 30 , the quantity $2 \chi^{2}-\sqrt{2 \text { d.f. }-1}$ may be used as a normal variate with unit variance i.e.. $z_{\alpha}=\sqrt{2 \chi^{2}}-\sqrt{2 \text { d.f. }-1}$.

Table $4(\mathrm{a})$: Critical Values of F-Distribution (at 5 per cent)

	1	2	3	4	5	6	8	12	24	∞
							1.4	199.5	215.7	224.6
230.2	234.0	238.9	243.9	249.1	243.3					
2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.85	8.74	8.64	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.61	2.40
12	4.75	3.88	3.49	3.26	3.11	3.00	2.85	2.69	2.51	2.30
13	4.67	3.80	3.41	3.18	3.02	2.92	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.38	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.73
25	4.24	3.38	2.99	2.76	2.60	2.49	2.34	2.16	1.96	1.71
26	4.22	3.37	2.98	2.74	2.59	2.47	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.29	2.12	1.91	1.65
29	4.18	3.33	2.93	2.70	2.54	2.43	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.52	2.37	2.25	2.10	1.92	1.70	1.39
120	3.92	3.07	2.68	2.45	2.29	2.17	2.02	1.83	1.61	1.25
∞	3.84	2.99	2.60	2.37	2.21	2.10	1.94	1.75	1.52	1.00

$r_{1}=$ Dezrees of freedom for greater vaniance.
$\mathfrak{c}_{2}=$ Degrees of freedom for smaller variance.

$D v_{1}$	1	2	3	4	5	6	8	12	24	cos
1	4052	4999.5	5403	5625	5764	5859	5982	6106	6235	6366
2	98.50	99.00	99.17	99.25	99.30	99.33	99.37	99.42	99.46	99.50
3	34.12	30.82	29.46	28.71	28.24	27.91	27.49	27.05	26.60	26.13
4	21.20	18.00	16.69	15.98	15.52	15.21	14.80	14.37	13.93	13.45
5	16.26	13.27	12.06	11.39	10.97	10.67	10.29	9.89	9.47	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.06	4.71	4.33	3.91
11	9.65	7.21	6.22	5.87	5.32	5.07	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.30	3.96	3.59	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.14	3.80	3.43	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.79	3.46	3.08	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.71	3.37	3.00	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.63	3.30	3.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.56	3.23	2.86	2.12
21	8.02	5.78	4.87	4.37	4.04	3.81	3.51	3.17	2.80	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.20	2.96	2.58	2.10
27	7.68	5.49	4.60	4.11	3.78	3.56	1.26	2.93	2.45	2.13
28	7.64	5.45	4.57	4.07	3.75	3.53	3.23	2.90	2.52	2.06
29	7.60	5.42	4.54	4.14	3.73	3.50	3.20	2.87	2.49	2.03
30	7.56	5.39	4.51	4.102	3.70	3.47	3.17	2.84	2.47	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	2.94	2.66	2.29	1.80
60	7.08	4.98	4.13	3.65	3.34	3.12	2.82	2.50	2.12	1.6 (1)
120	6.85	4.79	3.95	3.48	3.17	2.96	2.66	2.34	1.95	1.6 (1.38
∞	6.64	4.60	3.78	3.32	3.02	2.80	2.51	2.18	1.79	1.00

$v_{1}=$ Degrees of freedom for greater variance.
$v_{2}=$ Degrees of freedom for smaller variance.

Table 5: Vobes ior Speamaris Rank Correlation (r) for Combined Areas in Beth Thil'

n	. 20	. 10	. 05	. 02	. 01	.002
4	.8000	. 8000	-	-	-	-
5	. 7000	. 8000	. 9000	. 9000	-	-
6	. 6000	. 7714	. 8236	. 8857	. 9429	-
7	. 5357	. 6786	. 7450	. 8571	. 8929	. 9643
8	. 5000	. 6190	.7143	. 8095	.8571	. 9286
9	. 4667	. 5833	. 6833	. 7667	. 8167	. 9000
10	. 4424	. 5515	. 636.4	.7333	. 7818	. 8667
11	. 4182	. 5273	. 6091	. 7000	. 7455	. 8364
12	. 3986	. 4965	. 5804	. 6713	. 7273	. 8182
13	. 3791	. 4780	. 5549	. 6429	. 6978	. 7912
14	. 3626	. 4593	. 5341	. 6220	. 6747	. 7670
15	. 3500	. +429	. 5179	. 6000	. 6536	. 7464
16	. 3382	. 4265	. 5000	. 5824	. 6324	. 7265
17	. 3260	. 4118	. 4853	. 5637	. 6152	. 7083
18	. 3148	. 3994	. 4716	. 5480	. 5975	. 6904
19	. 3070	. 3895	. 4579	. 5333	. 5825	. 6737
20	. 2977	. 3789	. 4451	. 5203	. 5684	. 6586
21	. 2909	. 3688	. 4351	. 5078	. 5545	. 6455
22	. 2829	. 3597	. 4241	. 4963	. 5426	. 6318
23	. 2767	. 3518	. 4150	. 4852	. 5306	. 6186
24	. 2704	. 3435	. 4061	. 4748	. 5200	. 6070
25	. 2646	. 3362	. 3977	. 4654	. 5100	. 5962
26	. 2588	. 3299	. 3894	. 4564	. 5002	. 5856
27	. 2540	. 3236	. 3822	. 4481	. 4915	. 5757
28	. 2480	. 3175	. 3749	. 4401	. 4828	. 5660
29	. 2443	. 3113	. 3685	. 4320	. 4744	. 5567
30	.2400	. 3059	. 3620	. 4251	. 4665	. 5479

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Examination
M. Tech (civil Ens) hi Constr.

Total points: 100
Duration: 10:00am-1:00pm
Class: M.TECH (CM).
Semester: I
mot, San I
Date: 22/4/2022

Name of the Course: Management of Housing Projects
Code: MTCMPEC 123

Instructions:

5.	a. Why maintenance is important in building? b. What is maintenance and repair of building?	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	2 2	4 4	$\begin{aligned} & \hline 6.3 .1 \\ & 6.3 .1 \end{aligned}$
6.	a. Discuss Estate Management with respect to MHADA-Maharashtra Housing and Area Development Board. b. Short Note on Estate Management	10 10	1 1	3 3	
7.	a. What are the objects and reasons for which the Real Estate (Regulation and Development) Act 2016 has been framed? b. Is it mandatory for the promoter to obtain permissions for the real estate project before applying for registration to MahaRERA? c. In case of delay in getting possession from the promoter, will the buyer be entitled to get interest on the amount paid by him, for such delayed period?	10 5 5	2 2	4 4 4 4	7.1 .2 7.1 .2 7.1 .2

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

Re-Exam Semester Examination

$$
F \cdot 4, \infty
$$

 costs.
$m g 2) \operatorname{sen}$ I

Total points: 100
Date: 21/7/2022
Duration: 2:00pm-5:00pm
Class: M.TECH (CM).
Semester: I
Program: Civil
Name of the Course: Management of Housing Projects
Code: MTCMPEC 123
Instructions:
Attempt any 5 questions:-

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

END SEMESTER EXAMINATION

Total points :100
Date: 11/4/2022
Duration: $\mathbf{3} \mathbf{~ H r}$

mitch - Giviltug (constr sem M
Class: M.TECH (CM).
Semester: I
Program: Civil
Name of the Course: Construction Organisation \& Safety Management Course
Code: PC-MTCM-101
Instructions:
Attempt any 5 questions

Bharatiya Vidya Bhavan's

 Sardar Patel College of Engineering(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

Total points: 100
Duration: 3 Hours
Class: M.TECH(CM).
Name of the Course:
Accounting and Finance Management
Course Code :
PECMTCM 103

Instructions:

1. Attempt any five
2. Draw neat diagrams
3. Assume suitable data if necessary and state the clearly.

Que.

Que.	
No	

(A)

Company named $X Y Z$ limited is considering two project investment options (ie., Project A and Project B), both of which initially cost INR 20 lakhs. Further cashinflows of both the project are given in following table

Year	Project A (INR)	Project B (INR)
1	$1,000,000$	900,000
2	600000	$1,000,000$
3	800000	600000

Based on the payback period method, which of the project should be chosen?
A. Project A which has a payback period of 2 years and 8 months
B. Project A which has a payback period of 2 years and 6 months
C. Project B which has a payback period of 2 years and 2 months
D. Project B which has a payback period of 2 years and 6 months

Rohit has purchased a new motor bike for INR 120,000 . He was able to make a down payment equal to 20% of the value of the motorbike; the balance was loaned

Points	CO	BL	PI	
s	6	1		4
s		1.1 .1		

Q 1(C)	by the bank. The interest rate charged by the bank is 14% compounded quarterly. The loan must be returned in a 5 -year period by equal yearly payments. What is the value of the yearly instalments that Rohit must pay?				
Q2(A)	The initial cost of a piece of construction equipment is Rs. $30,00,000$ having a useful life of 10 years. The estimated salvage value of the equipment at the end of the useful life is Rs. 450,000 . 1. The book value of the construction equipment at the end of 5th year using Straight -line method is \qquad 2. The book value of the construction equipment at the end of 5 th year (BV5) and depreciation (d5) for 5th year using Double-declining balance method are \qquad 3. Determine the book value (BV5) of the construction equipment at the end of $5^{\text {th }}$ year and depreciation (d5) for 5th year using Sum-of-the-years-digits method \qquad 4. Determine accumulated depreciation at the end of 5th year using Sinking fund method, if interest rate is 8.2% per year \qquad	16	2	4	1.1.2
Q2(B)	A consultant proposes two designs (Type ' A ' and Type ' B ') for a bridge to be constructed across a river. Type ' A ' design of a bridge costs INR 45 crores and an expense of INR 3 crores every year to operate and maintain it. Type ' B ' design of bridge costs INR 60 crores and an expense of INR 1.5 crores every year to operate and maintain it. Both the designs have considered 100 years as the design life of the bridge. The minimum required rate of return is 8 percent. Which of the following options is the best recommendation based on the information provided above? A. Go-ahead with Type ' A ' design as it has lower initial investment B. Go- ahead with Type ' B ' design as it has lower operating and maintenance cost C. Go-ahead with Type ' A ' design as its net present worth is INR $825,000,000 \mathrm{D}$. Go-ahead with Type ' B ' design as its net present worth is INR 787,000,000	4	3	3	
Q3(A)	A piece of land was purchased at INR 40 lakhs. An investment of an additional INR	4	1	4	1.2.3
	20 lakhs was made to construct a small shopping complex on this land. The complex is expected to fetch an annual rental of INR 75,000 to the owner, while the cost towards its upkeep, tax, etc., is expected to be INR 30,000 annually. The owner plans to sell the entire plot with constructed facilities at an expected price of INR 120 lakhs at the end of five years. What percent rate of return will be earned by the owner on this investment?				
Q3(B)	Consider the following information with respect to two projects (Project ' A ' and Project ' B ') provided in the table.	10	2	4	1.1.2

End of year Cash flows (INR)	0	1	2	3
Project 'A'	$-50,000$	9,000	18500	45000
Project 'B'	$-50,000$	45000	15000	17000

Assume minimum attractive rate of return to is 10 percent.

1. Using computations based on present worth method, which of the following sets correctly represents the net present worth of both the projects?
A. Net Present Worth Project 'A' is INR 22,500 and Net Present Worth of Project ' B ' is INR 27000
B. Net Present Worth Project 'A' is INR 27,000 and Net Present Worth of Project ' B ' is INR 22,500 C. Net Present Worth Project ' A ' is INR 7,280 and Net Present Worth of Project ' B ' is INR 16,078
D. Net Present Worth Project 'A' is INR 16,078 and Net Present Worth of Project ' B ' is INR 7,280
2. Using computations based on annual worth method, choose the best alternative.
A. Chose Project ' A ' as its Annual Worth is INR 2,927
B. Chose Project ' A ' as its Annual Worth is INR 7,280 C. Chose Project ' B ' as its Annual Worth is INR 6,465
D. Chose Project ' B ' as its Annual Worth is INR 16,078
3. What is Net Present Worth based on difference in cashflows of two projects (i.e., Project 'A' - Project 'B').

Q3(C) Two pumps can be used for pumping a corrosive liquid. A pump with a brass impeller costs INR 40,000 and is expected to last for three years. A pump with a stainless-steel impeller will cost INR 95,000 and lasts for five years. An overhaul costing INR 15,000 will be required after 2000 operating hours of brass one while an overhaul of INR 35, 000 for stainless steel after 9000 hours. If the operating cost of each pump is INR $25 /$ hour, how many hours /year (rounded off to nearest integer) must the pump be required to justify the purchase of an expensive pump? Interest rate 10% per year

Q4(A) The estimates of the cash inflows after taxes (CFAT) for a proposed project, whose expected life is 2 years, are shown in the given decision tree. As shown, the initial investment needed for the project is INR 80,000 . The cash inflows are shown on arrows and the associated probabilities are shown inside the circles. Assuming that there is no correlation between the cash inflows of two years, and, that the annual interest rate is 10%, what is the expected net present value (in INR) of the proposed project.

Calculate NPV of each proposal at 10% rate of return

Q6(D)

 Consider the data forcompany is carrying out:

Description	Project - X	Project - Y
	All amounts in INR	
Contract amount	$15,00,000$	$25,00,000$
Original estimated cost	$18,00,000$	$26,00,000$
Billed to date	$13,00,000$	$11,00,000$
Payments received to date	1050000	1050000
Costs incurred to date	750000	8000000
Forecasted costs to complete the balance work	250000	$17,00,000$
Cost paid to date	700000	700000

1. The percentage completion of Project X is \qquad
2. Which of the following statements is TRUE?
a) There is an over-billing of 1.5 lakh for Project X
b) There is an under-billing of 1.5 lakh for Project X
c) There is an over-billing of 3 lakhs for Project Y
d) There is an under-billing of 2 lakhs for Project Y
3. Let ' P ' and ' Q ' represent the amount receivable till date, for projects X and Y, respectively. The sum of P and Q (in INR) is \qquad .

Q7(A) A contractor had an income of INR 50,000 (after tax) in the year 2020. The depreciation expenses were INR 6,500 , and total cash flow was INR 50,000 . What happened to the net working capital during the year?

For a given project, the contractor has estimated that he would be required to keep an average stock equivalent to INR 20 lakhs. Further, it is also estimated that the average outstanding and average unadjusted advance would be INR 270 lakhs and 60 lakhs, respectively. Estimate the average funds likely to be to be employed for this project if it is known that the contractor would be required to keep an average fixed asset of INR 50 lakhs.

Q7(C)
Calculate the acid test ratio and current ratio from the given Table:

Description	Amount (INR)
Cash	1500
Debtors	1000
Total current liabilities	5000

Choose the correct answer for acid test ratio and current ratio respectively from the given options
A. $(0.25: 1,0.25: 1)$
B. (0.5:1, 0.5:1)
C. (0.25:1, $0.5: 1)$

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

End Sem Exam April 2022
Program: M. Tech. Construction Management Sem I Duration: 3 hr
Course code:MTCM103
Maximum Marks: 20
Name of the Course: Advanced Construction Techniques
Semester: I
Instructions:

1. Attempt any 5 questions.
2. Neat diagrams must be drawn wherever necessary.
3. Figures to the right side indicate full marks.
4. Assume Suitable data if necessary and state it clearly

4 c	Explain about low cost roads.	05	CO 2	BL 1	1.3 .1
5 a	Discuss slip form method of construction.	05	CO 2	BL 1	1.3 .1
5 b	Discuss applications of GGBs.	05	CO 2	BL 2	2.1 .2
	You have been assigned responsibility of construction of Smart city project, wherein it is proposed to use sustainable materials, which materials will you prefer for this project, explain in detail.	10	CO 3	BL 3	3.1 .6
6 a	Explain in detail the various types of pile foundations.	08	CO 1	BL 1	1.3 .1
6 b	Discuss the need of recycling of material along with purpose of recycled aggregates.	06	CO 2	BL 2	1.3 .1
6 c	Discuss different methods of boring.	06	CO 1	BL 1	2.1 .2
7 a	Elaborate on various types of patented formworks with their advantages and disadvantages.	10	CO 2	BL 2	1.3 .1
7 b	Define and discuss pre-stressing along with its type and advantages	06	CO 1	BL 1	1.3 .1
7 c	Brief about safety precautions to be taken during geotechnical exploration.	04	CO 1	BL 2	1.3 .1

Bharatiya Vida Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Subject : Research Methodology and IPR
Total Marks :100
Duration : 3 Hours
Class: MTech, Sem:I,

- Question 1 is compulsory
- Solve Any Four Questions from the remaining
- Answers to all sub questions must be grouped together
- Figures to the right indicate full marks
- Assume suitable data wherever necessary

Q3A	A data of 450 con type of construct by Type of Proje association betwe Successful Not Successful Total	$\begin{aligned} & \text { nstruct } \\ & \text { ion pr } \\ & \text { ect ar } \\ & \text { een Ty } \end{aligned}$	ction Projects roject and suc re as follows. ype of Project International Projects 46 184 230	review of co alpha being Don 88 179 267	d to know as truction pro 0.05 do thes uccessful? stic Project	iation between The response data suggest an	10	M5	CO2
Q3B	Manufacturer wants to test on the basis of sample size 35 determinations and at 0.05 and 0.01 levels of significance whether the thermal conductivity of a certain kind of plate is 0.34 units, as has been claimed. The mean of sample is 0.343. From the information gathered in similar studies, we can expect that the variability of such determinations is given by $\sigma=0.01$. Assume any suitable data if necessary.						10	M1, M5	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$
Q4A	A maker of golf advertising dollar company invested	$\begin{aligned} & \text { shirts } \\ & \text { s. Use } \\ & \text { d \$68, } \\ & \hline 1 \\ & \hline \frac{150}{42} \\ & \hline \end{aligned}$	s has been track se linear regres ,000 in advert	g the to ti next	elationship out what sa ear. 3 170 60	veen sales and might be if the	10	M1, M5	$\begin{aligned} & \mathrm{CO}, \\ & \mathrm{CO} 2 \end{aligned}$
Q4B	State the characteristics of Good research Problem						10	M1	CO1
Q5A	Differentiate between Research Paper and Review paper. State the Guidelines to write the research article.						10	M2, M3	$\begin{aligned} & \mathrm{CO}, \\ & \mathrm{CO} 2 \end{aligned}$
Q5B	Differentiate between Qualitative and Quantitative Research						10	M1, M2	CO1
Q6A	State the difference between Copyright Patent and Trademark						10	M5	$\begin{aligned} & \hline \mathrm{CO}, \\ & \mathrm{CO} 4 \end{aligned}$
Q6B	Draw the flow chart and explain the procedure to receive the patent.						10	M4, M6	$\begin{aligned} & \mathrm{C} \\ & \mathrm{CO} 4 \end{aligned}$
Q7	Explain the following with suitable examples - Null Hypothesis and Alternate Hypothesis - Type 1 error and Type 2 error - Test Statistics - Confidence Level and p value - Limitations and advantages of Hypothesis Test - Rejection Region - Left Tail Test and Right Tail Test - One Tail Test and Two Tail Test						20	M1	CO1

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester - April 2022 Examinations m. Ten il (idle Ergs) in

Program: F \mathcal{Y} M. Tech
Course Code: AU-PG 01

Maximum Points:100

Course Name: Project Planning and Management
Semester: I

Notes: 1. Answer any five questions.
2 All questions carry 20 points.

Q.No.	Questions	Points	CO	BL	PI
1	1.1 What are the attributes or skills that a Project Manager should have?	1.2 Explain the three Project Quality Management processes	10	2	2

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester - April 2022 Examinations

	4.2 Define degrees of freedom. Specify the degrees of freedom and the equilibrium conditions for a rigid body in two dimensions.				
	4.3 Explain Strength, Stiffness, Stability and Ductility at the element and system levels.	5			
	Explain any three top emerging trends which are impacting the Construction industry today.	10	1	2	3
	5.2 In five areas, explain how structural engineers can overcome the challenges faced by the profession.	10	1	2	11.3 .2
	List out atleast ten points defining the scope of a contour and traverse survey for a project plot.			2.3 .1	
6	6.2 Why is quantity/cost monitoring important during execution of a CSA item-rate contract? How is quantity monitoring done during the project execution?	10	3	4	2.4 .2
	6.3 What are the main objectives of constructability reviews	5	3	5	1.3 .1
	7.1 In a soil investigation specification, describe five field tests you would specify along with the soil parameter each test would measure	5	10	3	2

[^0]: $y_{1}=$ Degrees of freedom for greater vanance.

